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Chapter 4: Generating Functions

This chapter looks at Probability Generating Functions (PGFs) for discrete

random variables. PGFs are useful tools for dealing with sums and limits of

random variables. For some stochastic processes, they also have a special role
in telling us whether a process will ever reach a particular state.

By the end of this chapter, you should be able to:

• find the sum of Geometric, Binomial, and Exponential series;

• know the definition of the PGF, and use it to calculate the mean, variance,

and probabilities;

• calculate the PGF for Geometric, Binomial, and Poisson distributions;

• calculate the PGF for a randomly stopped sum;

• calculate the PGF for first reaching times in the random walk;

• use the PGF to determine whether a process will ever reach a given state.

4.1 Common sums

1. Geometric Series

1 + r + r2 + r3 + . . . =

∞
∑

x=0

rx =
1

1− r
, when|r| < 1.

This formula proves that
∑∞

x=0 P(X = x) = 1 when X ∼ Geometric(p):

P(X = x) = p(1− p)x ⇒
∞
∑

x=0

P(X = x) =
∞
∑

x=0

p(1− p)x

= p
∞
∑

x=0

(1− p)x

=
p

1− (1− p)
(because|1− p| < 1)

= 1.
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2. Binomial Theorem For anyp, q ∈ R, and integern,

(p+ q)n =

n
∑

x=0

(

n

x

)

pxqn−x.

Note that
(

n

x

)

=
n!

(n− x)! x!
(nCr button on calculator.)

The Binomial Theorem proves that
∑n

x=0 P(X = x) = 1 whenX ∼ Binomial(n, p):

P(X = x) =

(

n

x

)

px(1− p)n−x for x = 0, 1, . . . , n, so

n
∑

x=0

P(X = x) =

n
∑

x=0

(

n

x

)

px(1− p)n−x

=
(

p+ (1− p)
)n

= 1n

= 1.

3. Exponential Power Series

For anyλ ∈ R,
∞
∑

x=0

λx

x!
= eλ.

This proves that
∑∞

x=0 P(X = x) = 1 when X ∼ Poisson(λ):

P(X = x) =
λx

x!
e−λ for x = 0, 1, 2, . . ., so

∞
∑

x=0

P(X = x) =
∞
∑

x=0

λx

x!
e−λ = e−λ

∞
∑

x=0

λx

x!

= e−λ eλ

= 1.

Note: Another useful identity is: eλ = lim
n→∞

(

1 +
λ

n

)n

for λ ∈ R.
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4.2 Probability Generating Functions

The probability generating function (PGF) is a useful tool for dealing

with discrete random variables taking values 0, 1, 2, . . .. Its particular strength
is that it gives us an easy way of characterizing the distribution of X +Y when

X and Y are independent. In general it is difficult to find the distribution of
a sum using the traditional probability function. The PGF transforms a sum

into a product and enables it to be handled much more easily.

Sums of random variables are particularly important in the study of stochastic

processes, because many stochastic processes are formed from the sum of a
sequence of repeating steps: for example, the Gambler’s Ruin from Section 2.7.

The name probability generating function also gives us another clue to the role

of the PGF. The PGF can be used to generate all the probabilities of the
distribution. This is generally tedious and is not often an efficient way of

calculating probabilities. However, the fact that it can be done demonstrates
that the PGF tells us everything there is to know about the distribution.

Definition: Let X be a discrete random variable taking values in the non-negative

integers {0, 1, 2, . . .}. The probability generating function (PGF) of X is

GX(s) = E(sX), for all s ∈ R for which the sum converges.

Calculating the probability generating function

GX(s) = E
(

sX
)

=

∞
∑

x=0

sxP(X = x).

Properties of the PGF:

1. GX(0) = P(X = 0):

GX(0) = 00 × P(X = 0) + 01 × P(X = 1) + 02 × P(X = 2) + . . .

∴ GX(0) = P(X = 0).
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2. GX(1) = 1 : GX(1) =
∞
∑

x=0

1xP(X = x) =
∞
∑

x=0

P(X = x) = 1.

Example 1: Binomial Distribution

Let X ∼ Binomial(n, p), so P(X = x) =

(

n

x

)

pxqn−x for x = 0, 1, . . . , n.

GX(s) =
n
∑

x=0

sx
(

n

x

)

pxqn−x

=

n
∑

x=0

(

n

x

)

(ps)xqn−x

= (ps+ q)n by the Binomial Theorem: true for alls.

ThusGX(s) = (ps+ q)n for all s ∈ R.

s

G
(s

)

−20 −10 0 10

0
50

10
0

15
0

20
0

X ~ Bin(n=4, p=0.2)

Check GX(0):

GX(0) = (p× 0 + q)n

= qn

= P(X = 0).

Check GX(1):

GX(1) = (p× 1 + q)n

= (1)n

= 1.



78

Example 2: Poisson Distribution

Let X ∼ Poisson(λ), so P(X = x) =
λx

x!
e−λ for x = 0, 1, 2, . . ..

GX(s) =
∞
∑

x=0

sx
λx

x!
e−λ = e−λ

∞
∑

x=0

(λ s)x

x!

= e−λe(λs) for all s ∈ R.

Thus GX(s) = eλ(s−1) for all s ∈ R.

s

G
(s

)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
10

20
30

40
50

X ~ Poisson(4)

Example 3: Geometric Distribution

Let X ∼ Geometric(p), so P(X = x) = p(1 − p)x = pqx for x = 0, 1, 2, . . .,
where q = 1− p.

−5 0 5

0
1

2
3

4
5

G(s)

s

to infinity
X ~ Geom(0.8)

GX(s) =

∞
∑

x=0

sxpqx

= p
∞
∑

x=0

(qs)x

=
p

1− qs
for all s such that|qs| < 1.

Thus GX(s) =
p

1− qs
for |s| < 1

q
.
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4.3 Using the probability generating function to calculate probabilities

The probability generating function gets its name because the power series can
be expanded and differentiated to reveal the individual probabilities. Thus,

given only the PGFGX(s) = E(sX), we can recover all probabilitiesP(X = x).

For shorthand, write px = P(X = x). Then

GX(s) = E(sX) =
∞
∑

x=0

pxs
x = p0 + p1s+ p2s

2 + p3s
3 + p4s

4 + . . .

Thus p0 = P(X = 0) = GX(0).

First derivative: G′
X(s) = p1 + 2p2s+ 3p3s

2 + 4p4s
3 + . . .

Thus p1 = P(X = 1) = G′
X(0).

Second derivative: G′′
X(s) = 2p2 + (3× 2)p3s+ (4× 3)p4s

2 + . . .

Thus p2 = P(X = 2) =
1

2
G′′

X(0).

Third derivative: G′′′
X(s) = (3× 2× 1)p3 + (4× 3× 2)p4s+ . . .

Thus p3 = P(X = 3) =
1

3!
G′′′

X(0).

In general:

pn = P(X = n) =

(

1

n!

)

G
(n)
X (0) =

(

1

n!

)

dn

dsn
(GX(s))

∣

∣

∣

∣

s=0

.
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Example: Let X be a discrete random variable with PGF GX(s) =
s

5
(2 + 3s2).

Find the distribution of X.

GX(s) =
2

5
s+

3

5
s3 : GX(0) = P(X = 0) = 0.

G′
X(s) =

2

5
+

9

5
s2 : G′

X(0) = P(X = 1) =
2

5
.

G′′
X(s) =

18

5
s :

1

2
G′′

X(0) = P(X = 2) = 0.

G′′′
X(s) =

18

5
:

1

3!
G′′′

X(0) = P(X = 3) =
3

5
.

G
(r)
X (s) = 0 ∀r ≥ 4 :

1

r!
G

(r)
X (s) = P(X = r) = 0 ∀r ≥ 4.

Thus

X =

{

1 with probability2/5,
3 with probability3/5.

Uniqueness of the PGF

The formula pn = P(X = n) =

(

1

n!

)

G
(n)
X (0) shows that the whole sequence of

probabilities p0, p1, p2, . . . is determined by the values of the PGF and its deriv-
atives at s = 0. It follows that the PGF specifies a unique set of probabilities.

Fact: If two power series agree on any interval containing 0, however small, then
all terms of the two series are equal.

Formally: letA(s) andB(s) be PGFs withA(s) =
∑∞

n=0 ans
n, B(s) =

∑∞
n=0 bns

n.

If there exists some R′ > 0 such that A(s) = B(s) for all −R′ < s < R′, then
an = bn for all n.

Practical use: If we can show that two random variables have the same PGF in
some interval containing 0, then we have shown that the two random variables
have the same distribution.

Another way of expressing this is to say that the PGF ofX tells us everything
there is to know about the distribution ofX.
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4.4 Expectation and moments from the PGF

As well as calculating probabilities, we can also use the PGF to calculate the
moments of the distribution of X. The moments of a distribution are the mean,
variance, etc.

Theorem 4.4: Let X be a discrete random variable with PGF GX(s). Then:

1. E(X) = G′
X(1).

2. E
{

X(X − 1)(X − 2) . . . (X − k + 1)
}

= G
(k)
X (1) =

dk GX(s)

dsk

∣

∣

∣

∣

s=1

.

(This is thekth factorial momentof X.)

Proof: (Sketch: see Section 4.8 for more details)

1.
GX(s) =

∞
∑

x=0

sx px,

so G′
X(s) =

∞
∑

x=0

xsx−1px

⇒ G′
X(1) =

∞
∑

x=0

xpx = E(X)

s

G
(s

)

0.0 0.5 1.0 1.5

0
2

4
6

X ~ Poisson(4)

2. G
(k)
X (s) =

dk GX(s)

dsk
=

∞
∑

x=k

x(x− 1)(x− 2) . . . (x− k + 1)sx−kpx

so G
(k)
X (1) =

∞
∑

x=k

x(x− 1)(x− 2) . . . (x− k + 1)px

= E

{

X(X − 1)(X − 2) . . . (X − k + 1)
}

. �
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Example: Let X ∼ Poisson(λ). The PGF of X is GX(s) = eλ(s−1). Find E(X)
and Var(X).

Solution:

s

G
(s

)

0.0 0.5 1.0 1.5

0
2

4
6

X ~ Poisson(4)

G′
X(s) = λeλ(s−1)

⇒ E(X) = G′
X(1) = λ.

For the variance, consider

E

{

X(X − 1)
}

= G′′
X(1) = λ2eλ(s−1)|s=1 = λ2.

So

Var(X) = E(X2)− (EX)2

= E

{

X(X − 1)
}

+ EX − (EX)2

= λ2 + λ− λ2

= λ.

4.5 Probability generating function for a sum of independent r.v.s

One of the PGF’s greatest strengths is that it turns a sum into a product:

E

(

s(X1+X2)
)

= E

(

sX1sX2

)

.

This makes the PGF useful for finding the probabilities and moments of a sum
of independent random variables.

Theorem 4.5: Suppose that X1, . . . , Xn are independent random variables, and
let Y = X1 + . . .+Xn. Then

GY (s) =

n
∏

i=1

GXi
(s).
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Proof: GY (s) = E(s(X1+...+Xn))

= E(sX1sX2 . . . sXn)

= E(sX1)E(sX2) . . .E(sXn)

(becauseX1, . . . , Xn are independent)

=

n
∏

i=1

GXi
(s). as required. �

Example: Suppose that X and Y are independent with X ∼ Poisson(λ) and
Y ∼ Poisson(µ). Find the distribution of X + Y .

Solution: GX+Y (s) = GX(s) ·GY (s)

= eλ(s−1)eµ(s−1)

= e(λ+µ)(s−1).

But this is the PGF of the Poisson(λ + µ) distribution. So, by the uniqueness of
PGFs,X + Y ∼ Poisson(λ+ µ).

4.6 Randomly stopped sum

Remember the randomly stopped sum model from

Section 3.4. A random number N of events occur,
and each event i has associated with it a cost or

reward Xi. The question is to find the distribution
of the total cost or reward: TN = X1 +X2 + . . .+XN .

TN is called a randomly stopped sum because it has a random number of terms.

Example: Cash machine model. N customers arrive during the day. Customer i
withdraws amount Xi. The total amount withdrawn during the day is TN =

X1 + . . .+XN .
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In Chapter 3, we used the Laws of Total Expectation and Variance to show
that E(TN) = µE(N) and Var(TN) = σ2

E(N) + µ2Var(N), where µ = E(Xi)

and σ2 = Var(Xi).

In this chapter we will now use probability generating functions to investigate
the whole distribution ofTN .

Theorem 4.6: Let X1, X2, . . . be a sequence of independent and identically dis-
tributed random variables with common PGF GX . LetN be a random variable,

independent of the Xi’s, with PGF GN , and let TN = X1+ . . .+XN =
∑N

i=1Xi.
Then the PGF of TN is:

GTN
(s) = GN

(

GX(s)
)

.

Proof:

GTN
(s) = E(sTN) = E

(

sX1+...+XN
)

= EN

{

E

(

sX1+...+XN

∣

∣

∣
N
)}

(conditional expectation)

= EN

{

E
(

sX1 . . . sXN |N
)

}

= EN

{

E
(

sX1 . . . sXN
)

}

(Xi’s are indept ofN)

= EN

{

E
(

sX1

)

. . .E
(

sXN
)

}

(Xi’s are indept of each other)

= EN

{

(GX(s))
N
}

= GN

(

GX(s)
)

(by definition ofGN ). �



85

Example: Let X1, X2, . . . and N be as above. Find the mean of TN .

E(TN) = G′
TN
(1) =

d

ds
GN(GX(s))

∣

∣

∣

s=1

= G′
N (GX(s)) ·G′

X(s)
∣

∣

∣

s=1

= G′
N (1) ·G′

X(1) Note:GX(1) = 1 for any r.v.X

= E(N) · E(X1), — same answer as in Chapter 3.

Example: Heron goes fishing

My aunt was asked by her neighbours to feed the prize

goldfish in their garden pond while they were on holiday.
Although my aunt dutifully went and fed them every day,
she never saw a single fish for the whole three weeks. It

turned out that all the fish had been eaten by a heron
when she wasn’t looking!

Let N be the number of times the heron visits the pond

during the neighbours’ absence. Suppose that N ∼ Geometric(1− θ),
so P(N = n) = (1 − θ)θn, for n = 0, 1, 2, . . .. When the heron visits the pond

it has probability p of catching a prize goldfish, independently of what happens
on any other visit. (This assumes that there are infinitely many goldfish to be
caught!) Find the distribution of

T = total number of goldfish caught.

Solution:

Let Xi =

{

1 if heron catches a fish on visiti,
0 otherwise.

ThenT = X1 +X2 + . . .+XN (randomly stopped sum), so

GT (s) = GN(GX(s)).
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Now

GX(s) = E(sX) = s0 × P(X = 0) + s1 × P(X = 1) = 1− p+ ps.

Also,

GN (r) =
∞
∑

n=0

rnP(N = n) =
∞
∑

n=0

rn(1− θ)θn

= (1− θ)

∞
∑

n=0

(θr)n

=
1− θ

1− θr
. (r < 1/θ).

So

GT (s) =
1− θ

1− θ GX(s)
(puttingr = GX(s)),

giving:

GT (s) =
1− θ

1− θ(1− p + ps)

=
1− θ

1− θ + θp− θps

[could this be Geometric?GT (s) =
1− π

1− πs
for someπ?]

=
1− θ

(1− θ + θp)− θps

=

(

1− θ

1− θ + θp

)

(

(1− θ + θp)− θps

1− θ + θp

)
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=

(

1− θ + θp− θp

1− θ + θp

)

1−
(

θp

1− θ + θp

)

s

=

1−
(

θp

1− θ + θp

)

1−
(

θp

1− θ + θp

)

s

.

This is the PGF of the Geometric
(

1− θp

1− θ + θp

)

distribution, so by unique-

ness of PGFs, we have:

T ∼ Geometric
(

1− θ

1− θ + θp

)

.

Why did we need to use the PGF?

We could have solved the heron problem without using the PGF, but it is much
more difficult. PGFs are very useful for dealing with sums of random variables,

which are difficult to tackle using the standard probability function.

Here are the first few steps of solving the heron problem without the PGF.
Recall the problem:

• Let N ∼ Geometric(1− θ), so P(N = n) = (1− θ)θn;

• LetX1, X2, . . . be independent of each other and ofN , withXi ∼ Binomial(1, p)
(remember Xi = 1 with probability p, and 0 otherwise);

• Let T = X1 + . . .+XN be the randomly stopped sum;

• Find the distribution of T .
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Without using the PGF, we would tackle this by looking for an expression for
P(T = t) for any t. Once we have obtained that expression, we might be able

to see that T has a distribution we recognise (e.g. Geometric), or otherwise we
would just state that T is defined by the probability function we have obtained.

To find P(T = t), we have to partition over different values ofN :

P(T = t) =

∞
∑

n=0

P(T = t |N = n)P(N = n). (⋆)

Here, we are lucky that we can write down the distribution of T |N = n:

• if N = n is fixed, then T = X1 + . . . + Xn is a sum of n independent
Binomial(1, p) random variables, so (T |N = n) ∼ Binomial(n, p).

For most distributions of X, it would be difficult or impossible to write down the
distribution ofX1 + . . .+Xn:

we would have to use an expression like

P(X1 + . . .+XN = t |N = n) =
t
∑

x1=0

t−x1
∑

x2=0

. . .

t−(x1+...+xn−2)
∑

xn−1=0

{

P(X1 = x1)×

P(X2 = x2)× . . .× P(Xn−1 = xn−1)× P[Xn = t− (x1 + . . .+ xn−1)]
}

.

Back to the heron problem: we are lucky in this case that we know the distri-

bution of (T |N = n) is Binomial(N = n, p), so

P(T = t |N = n) =

(

n

t

)

pt(1− p)n−t for t = 0, 1, . . . , n.

Continuing from (⋆):

P(T = t) =
∞
∑

n=0

P(T = t |N = n)P(N = n)
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=
∞
∑

n=t

(

n

t

)

pt(1− p)n−t(1− θ)θn

= (1− θ)

(

p

1− p

)t ∞
∑

n=t

(

n

t

)

[

θ(1− p)
]n

(⋆⋆)

= . . . ?

As it happens, we can evaluate the sum in (⋆⋆) using the fact that Negative

Binomial probabilities sum to 1. You can try this if you like, but it is quite
tricky. [Hint: use the Negative Binomial (t+ 1, 1− θ(1− p)) distribution.]

Overall, we obtain the same answer that T ∼ Geometric

(

1− θ

1− θ + θp

)

, but

hopefully you can see why the PGF is so useful.

Without the PGF, we have two major difficulties:

1. Writing downP(T = t |N = n);

2. Evaluating the sum overn in (⋆⋆).

For a general problem, both of these steps might be too difficult to do without
a computer. The PGF has none of these difficulties, and even if GT (s) does not

simplify readily, it still tells us everything there is to know about the distribution
of T .

4.7 Summary: Properties of the PGF

Definition: GX(s) = E(sX)

Used for: Discrete r.v.s with values 0, 1, 2, . . .

Moments: E(X) = G′
X(1) E

{

X(X − 1) . . . (X − k + 1)
}

= G
(k)
X (1)

Probabilities: P(X = n) =
1

n!
G

(n)
X (0)

Sums: GX+Y (s) = GX(s)GY (s) for independent X, Y
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4.8 Convergence of PGFs

We have been using PGFs throughout this chapter without paying much at-
tention to their mathematical properties. For example, are we sure that the

power series GX(s) =
∑∞

x=0 s
x
P(X = x) converges? Can we differentiate and

integrate the infinite power series term by term as we did in Section 4.4? When
we said in Section 4.4 that E(X) = G′

X(1), can we be sure that GX(1) and its

derivative G′
X(1) even exist?

This technical section introduces the radius of convergence of the PGF.
Although it isn’t obvious, it is always safe to assume convergence of GX(s) at

least for |s| < 1. Also, there are results that assure us that E(X) = G′
X(1) will

work for all non-defective random variables X.

Definition: The radius of convergence of a probability generating function is a
numberR > 0, such that the sumGX(s) =

∑∞
x=0 s

x
P(X = x) converges if

|s| < R and diverges (→ ∞) if |s| > R.

(No general statement is made about what happens when |s| = R.)

Fact: For any PGF, the radius of convergence exists.

It is always ≥ 1: every PGF converges for at least s ∈ (−1, 1).

The radius of convergence could be anything from R = 1 to R = ∞.

Note: This gives us the surprising result that the set of s for which the PGF GX(s)

converges is symmetric about 0: the PGF converges for all s ∈ (−R,R), and
for no s < −R or s > R.

This is surprising because the PGF itself is not usually symmetric about 0: i.e.
GX(−s) 6= GX(s) in general.

Example 1: Geometric distribution

Let X ∼ Geometric(p = 0.8). What is the radius of convergence of GX(s)?
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As in Section 4.2,

GX(s) =
∞
∑

x=0

sx(0.8)(0.2)x = 0.8
∞
∑

x=0

(0.2s)x

=
0.8

1− 0.2s
for all s such that|0.2s| < 1.

This is valid for alls with |0.2s| < 1, so it is valid for alls with |s| < 1
0.2 = 5.

(i.e.−5 < s < 5.)
The radius of convergence isR = 5.

The figure shows the PGF of the Geometric(p = 0.8) distribution, with its
radius of convergence R = 5. Note that although the convergence set (−5, 5) is

symmetric about 0, the function GX(s) = p/(1− qs) = 4/(5− s) is not.

−5 0 5

0
1

2
3

4
5

G(s)

s

to infinity

Radius of Convergence

Geometric(0.8) probability generating function

but it is no longer equal to E(s  ).
In this region, p/(1−qs) remains finite and well−behaved,

X

At the limits of convergence, strange things happen:

• At the positive end, as s ↑ 5, both GX(s) and p/(1− qs) approach infinity.
So the PGF is (left)-continuous at +R:

lim
s↑5

GX(s) = GX(5) = ∞.

However, the PGF does not converge at s = +R.
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• At the negative end, as s ↓ −5, the function p/(1 − qs) = 4/(5 − s) is
continuous and passes through 0.4 when s = −5. However, when s ≤
−5, this function no longer represents GX(s) = 0.8

∑∞
x=0(0.2s)

x, because
|0.2s| ≥ 1.

Additionally, when s = −5, GX(−5) = 0.8
∑∞

x=0(−1)x does not exist.
Unlike the positive end, this means that GX(s) is not (right)-continuous

at −R:
lim
s↓−5

GX(s) = 0.4 6= GX(−5).

Like the positive end, this PGF does not converge at s = −R.

Example 2: Binomial distribution

Let X ∼ Binomial(n, p). What is the radius of convergence of GX(s)?

As in Section 4.2,

GX(s) =
n
∑

x=0

sx
(

n

x

)

pxqn−x

=
n
∑

x=0

(

n

x

)

(ps)xqn−x

= (ps+ q)n by the Binomial Theorem: true for alls.

This is true for all−∞ < s < ∞, so the radius of convergence isR = ∞.

Abel’s Theorem for continuity of power series at s = 1

Recall from above that if X ∼ Geometric(0.8), then GX(s) is not continuous
at the negative end of its convergence (−R):

lim
s↓−5

GX(s) 6= GX(−5).

Abel’s theorem states that this sort of effect can never happen at s = 1 (or at

+R). In particular, GX(s) is always left-continuous at s = 1:

lim
s↑1

GX(s) = GX(1) always, even if GX(1) = ∞.
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Theorem 4.8: Abel’s Theorem.

Let G(s) =

∞
∑

i=0

pis
i for any p0, p1, p2, . . . with pi ≥ 0 for all i.

Then G(s) is left-continuous at s = 1:

lim
s↑1

G(s) =
∞
∑

i=0

pi = G(1) ,

whether or not this sum is finite.

Note: Remember that the radius of convergence R ≥ 1 for any PGF, so Abel’s
Theorem means that even in the worst-case scenario when R = 1, we can still

trust that the PGF will be continuous at s = 1. (By contrast, we can not be
sure that the PGF will be continuous at the the lower limit −R).

Abel’s Theorem means that for any PGF, we can write GX(1) as shorthand for
lims↑1GX(s).

It also clarifies our proof that E(X) = G′
X(1) from Section 4.4. If we assume

that term-by-term differentiation is allowed for GX(s) (see below), then the
proof on page 81 gives:

GX(s) =
∞
∑

x=0

sx px,

so G′
X(s) =

∞
∑

x=1

xsx−1px (term-by-term differentiation: see below).

Abel’s Theorem establishes that E(X) is equal to lims↑1G′
X(s):

E(X) =
∞
∑

x=1

xpx

= G′
X(1)

= lim
s↑1

G′
X(s),

because Abel’s Theorem applies to G′
X(s) =

∑∞
x=1 xs

x−1px, establishing that
G′

X(s) is left-continuous at s = 1. Without Abel’s Theorem, we could not be

sure that the limit of G′
X(s) as s ↑ 1 would give us the correct answer for E(X).
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Absolute and uniform convergence for term-by-term differentiation

We have stated that the PGF converges for all |s| < R for some R. In fact,

the probability generating function converges absolutely if |s| < R. Absolute
convergence is stronger than convergence alone: it means that the sum of abso-

lute values,
∑∞

x=0 |sxP(X = x)|, also converges. When two series both converge
absolutely, the product series also converges absolutely. This guarantees that

GX(s)×GY (s) is absolutely convergent for any two random variables X and Y .
This is useful because GX(s)×GY (s) = GX+Y (s) if X and Y are independent.

The PGF also converges uniformly on any set {s : |s| ≤ R′} where R′ < R.
Intuitively, this means that the speed of convergence does not depend upon the

value of s. Thus a value n0 can be found such that for all values of n ≥ n0,
the finite sum

∑n
x=0 s

x
P(X = x) is simultaneously close to the converged value

GX(s), for all s with |s| ≤ R′. In mathematical notation: ∀ǫ > 0, ∃n0 ∈
Z such that ∀s with |s| ≤ R′, and ∀n ≥ n0,

∣

∣

∣

∣

∣

n
∑

x=0

sxP(X = x)−GX(s)

∣

∣

∣

∣

∣

< ǫ.

Uniform convergence allows us to differentiate or integrate the PGF term by

term.

Fact: Let GX(s) = E(sX) =
∑∞

x=0 s
x
P(X = x), and let s < R.

1. G′
X(s)=

d

ds

( ∞
∑

x=0

sxP(X = x)

)

=

∞
∑

x=0

d

ds
(sxP(X = x))=

∞
∑

x=0

xsx−1
P(X = x).

(term by term differentiation).

2.

∫ b

a

GX(s) ds =

∫ b

a

( ∞
∑

x=0

sxP(X = x)

)

ds =

∞
∑

x=0

(
∫ b

a

sxP(X = x) ds

)

=
∞
∑

x=0

sx+1

x+ 1
P(X = x) for −R < a < b < R.

(term by term integration).
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4.9 Special Process: the Random Walk

We briefly saw the Drunkard’s Walk in Chapter 1: a drunk person staggers
to left and right as he walks. This process is called the Random Walk in

stochastic processes. Probability generating functions are particularly useful
for processes such as the random walk, because the process is defined as the
sum of a single repeating step. The repeating step is a move of one unit, left

or right at random. The sum of the first t steps gives the position at time t.

The transition diagram below shows the symmetric random walk (all transitions
have probabilityp = 1/2.)
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Question:

What is the key difference between the random walk and the gambler’s ruin?

The random walk has an INFINITE state space: it never stops. The gambler’s
ruin stops at both ends.

This fact has two important consequences:

• The random walk is hard to tackle using first-step analysis, because we
would have to solve an infinite number of simultaneous equations. In this

respect it might seem to be more difficult than the gambler’s ruin.

• Because the random walk never stops, all states are equal.

In the gambler’s ruin, states are not equal: the states closest to 0 are

more likely to end in ruin than the states closest to winning. By contrast,
the random walk has no end-points, so (for example) the distribution of

the time to reach state 5 starting from state 0 is exactly the same as the
distribution of the time to reach state 1005 starting from state 1000. We

can exploit this fact to solve some problems for the random walk that
would be much more difficult to solve for the gambler’s ruin.
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PGFs for finding the distribution of reaching times

For random walks, we are particularly interested in reaching times:

• How long will it take us to reach state j, starting from state i?

• Is there a chance that we will never reach state j, starting from state i?

In Chapter 3 we saw how to find expected reaching times: the expected
number of steps taken to reach a particular state. We used the law of total
expectation and first-step analysis (Section 3.5).

However, the expected or average reaching time doesn’t tell the whole story.
Think back to the model for gene spread in Section 3.7. If there is just one
animal out of 100 with the harmful allele, the expected number of generations to

fixation is quite large at 10.5: even though the allele will usually die out after one
or two generations. The high average is caused by a small chance that the allele

will take hold and grow, requiring a very large number of generations before it
either dies out or saturates the population. In most stochastic processes, the

average is of limited use by itself, without having some idea about the variance
and skew of the distribution.

With our tool of PGFs, we can characterise the whole distribution of the time
T taken to reach a particular state, by finding its PGF. This will give us the

mean, variance, and skew by differentiation. In principle the PGF could even
give us the full set of probabilities, P(T = t) for all possible t = 0, 1, 2, . . .,

though in practice it may be computationally infeasible to find more than the
first few probabilities by repeated differentiation.

However, there is a new and very useful piece of information that the PGF can

tell us quickly and easily:

what is the probability that we NEVER reach statej, starting from statei?

For example, imagine that the random walk represents the share value for an

investment. The current share price is i dollars, and we might decide to sell
when it reaches j dollars. Knowing how long this might take, and whether there

is a chance we will never succeed, is fundamental to managing our investment.
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To tackle this problem, we define the random variable T to be the time taken
(number of steps) to reach state j, starting from state i. We find the PGF of

T , and then use the PGF to discover P(T = ∞). If P(T = ∞) > 0, there is a
positive chance that we will NEVER reach state j, starting from state i.

We will see how to determine the probability of never reaching our goal in

Section 4.11. First we will see how to calculate the PGF of a reaching time T
in the random walk.

Finding the PGF of a reaching time in the random walk
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Define Tij to be the number of steps taken to reach statej, starting at statei.

Tij is called the first reaching time from statei to statej.

We will focus on T01 = number of steps to get from state0 to state1.

Problem: Let H(s) = E
(

sT01

)

be the PGF of T01. Find H(s).

Arrived!
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Solution:

Let Yn be the step taken at timen: up or down. For the symmetric random walk,

Yn =

{

1 with probability0.5,
−1 with probability0.5,

andY1, Y2, . . . are independent.

RecallTij = number of steps to get from statei to statej for anyi, j,

andH(s) = E
(

sT01

)

is the PGF required.

Use first-step analysis, partitioning over the first stepY1:

H(s) = E
(

sT01

)

= E
(

sT01 |Y1 = 1
)

P(Y1 = 1) + E
(

sT01 |Y1 = −1
)

P(Y1 = −1)

=
1

2

{

E
(

sT01 |Y1 = 1
)

+ E
(

sT01 |Y1 = −1
)

}

. ♠

Now if Y1 = 1, thenT01 = 1 definitely, soE
(

sT01 |Y1 = 1
)

= s1 = s.

If Y1 = −1, thenT01 = 1 + T−1,1:

→ one step from state0 to state−1,

→ thenT−1,1 steps from state−1 to state1.

But T−1,1 = T−1,0 + T01, because the process must pass through 0 to get from−1

to 1.

Now T−1,0 and T01 are independent (Markov property). Also, they have the
same distribution because the process is translation invariant (i.e. all states are
the same):
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1/2
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Thus

E
(

sT01 |Y1 = −1
)

= E
(

s1+T−1,1
)

= E
(

s1+T−1,0+T0,1
)

= sE
(

sT−1,0
)

E
(

sT01

)

by independence
= s(H(s))2 because identically distributed.

Thus
H(s) =

1

2

{

s+ s(H(s))2
}

by ♠.

This is a quadratic inH(s):
1

2
s(H(s))2 −H(s) +

1

2
s = 0

⇒ H(s) =
1±

√

1− 41
2s

1
2s

s
=

1±
√
1− s2

s
.

Which root? We know thatP(T01 = 0) = 0, because it must take at least one step

to go from 0 to 1. With the positive root,lims→0H(0) = lims→0

(

2

s

)

= ∞; so

we take the negative root instead.

Thus H(s) =
1−

√
1− s2

s
.

Check this haslims→0H(s) = 0 by L’Hospital’s Rule:

lim
s→0

(

f(s)

g(s)

)

= lim
s→0

(

f ′(s)

g′(s)

)

= lim
s→0

{

1
2(1− s2)−1/2 × 2s

1

}

= 0.
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Notation for quick solutions of first-step analysis for finding PGFs

As with first-step analysis for finding hitting probabilities and expected reaching
times, setting up a good notation is extremely important. Here is a good
notation for finding H(s) = E

(

sT01

)

.

Let T = T01. SeekH(s) = E(sT ).

Now

T =

{

1 with probability1/2,

1 + T ′ + T ′′ with probability1/2,

whereT ′ ∼ T ′′ ∼ T andT ′, T ′′ are independent.

Taking expectations:

H(s) = E(sT ) =

{

E
(

s1
)

w. p. 1/2

E
(

s1+T ′+T ′′
)

w. p. 1/2

⇒ H(s) =

{

s w. p. 1/2

sE
(

sT
′
)

E
(

sT
′′
)

w. p. 1/2 (by independence ofT ′ andT ′′)

⇒ H(s) =

{

s w. p. 1/2

sH(s)H(s) w. p. 1/2 (becauseT ′ ∼ T ′′ ∼ T )

⇒ H(s) = 1
2
s+ 1

2
sH(s)2.
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Thus:
sH(s)2 − 2H(s) + s = 0.

Solve the quadratic and select the correct root as before, toget

H(s) =
1−

√
1− s2

s
for |s| < 1.

4.10 Defective random variables

A random variable is said to be defective if it can take the value∞.

In stochastic processes, a reaching timeTij is defective if there is a chance that
we NEVER reach statej, starting from statei.

The probability that we never reach state j, starting from state i, is the same

as the probability that the time taken is infinite: Tij = ∞:

P(Tij = ∞) = P(we NEVER reach statej, starting from statei).

In other cases, we will alwaysreach statej eventually, starting from statei.

In that case, Tij can nottake the value∞:

P(Tij = ∞) = 0 if we are CERTAIN to reach statej, starting from statei.

Definition: A random variable T is defective, or improper, if it can take the value
∞. That is,

T is defective if P(T = ∞) > 0.
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Thinking of
∑

∞

t=0
P(T = t) as 1 − P(T = ∞)

Although it seems strange, when we write
∑∞

t=0 P(T = t), we are notincluding
the valuet = ∞.

The sum
∑∞

t=0 continues without ever stopping: at no point can we say we have

‘finished’ all the finite values of t so we will now add on t = ∞. We simply
never get tot = ∞ when we take

∑∞
t=0.

For a defective random variable T , this means that

∞
∑

t=0

P(T = t) < 1,

because we are missing the positive value of P(T = ∞).

All probabilities of T must still sum to 1, so we have

1 =

∞
∑

t=0

P(T = t) + P(T = ∞),

in other words ∞
∑

t=0

P(T = t) = 1− P(T = ∞).

PGFs for defective random variables

When T is defective, the PGF of T is defined as the power series

H(s) =
∞
∑

t=0

P(T = t)st for |s| < 1.

The term for P(T = ∞)s∞ is missed out. The PGF is defined as the generating
function of the probabilities for finite values only.
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Because H(s) is a power series satisfying the conditions of Abel’s Theorem, we
know that:

• H(s) is left-continuous at s = 1, i.e. lims↑1H(s) = H(1).

This is different from the behaviour of E(sT ), if T is defective:

• E(sT ) = H(s) for |s| < 1 because the missing term is zero: i.e. because

s∞ = 0 when |s| < 1.

• E(sT ) is NOT left-continuous at s = 1. There is a sudden leap (disconti-
nuity) at s = 1 because s∞ = 0 as s ↑ 1, but s∞ = 1 when s = 1.

Thus H(s) does NOT represent E(sT ) at s = 1. It is as if H(s) is a ‘train’ that
E(sT ) rides on between −1 < s < 1. At s = 1, the train keeps going (i.e. H(s)

is continuous) but E(sT ) jumps off the train.

We test whether T is defective by testing whether or not E(sT ) ‘jumps off the
train’ — that is, we test whether or not H(s) is equal to E(sT ) when s = 1.

We know what E(sT ) is when s = 1:

• E(sT ) is always 1 when s = 1, whether T is defective or not:

E(1T ) = 1 for ANY random variable T .

But the function H(s) =
∑∞

t=0 s
t
P(T = t) may or may not be 1 when s = 1:

• If T is defective, H(s) is missing a term and H(1) < 1.

• If T is not defective, H(s) is not missing anything so H(1) = 1.

Test for defectiveness:

Let H(s) =
∑∞

t=0 s
t
P(T = t) be the power series representing the PGF of T

for |s| < 1. Then T is defective if and only if H(1) < 1.
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Using defectiveness to find the probability we never get there

The simple test for defectiveness tells us whether there is a positive probability
that we NEVER reach our goal. Here are the steps.

1. We want to know the probability that we will NEVER reach state j, start-
ing from state i.

2. Define T to be the random variable giving the number of steps taken to
get from state i to state j.

3. The event that we never reach state j, starting from state i, is the same
as the event that T = ∞. (If we wait an infinite length of time, we never

get there.) So

P(never reach statej | start at statei) = P(T = ∞).

4. Find H(s) =
∑∞

t=0 s
t
P(T = t), using a calculation like the one we did in

Section 4.9. H(s) is the PGF of T for |s| < 1. We only need to find it for
|s| < 1. The calculation in Section 4.9 only works for |s| ≤ 1 because the

expectations are infinite or undefined when |s| > 1.

5. The random variable T is defective if and only if H(1) < 1.

6. If H(1) < 1, then the probability that T takes the value ∞ is the missing
piece: P(T = ∞) = 1−H(1).

Overall:

P( never reach statej | start at statei) = P(T = ∞) = 1−H(1).

Expectation and variance of a defective random variable

If T is defective, there is a positive chance that T = ∞. This means that
E(T ) = ∞, Var(T ) = ∞, andE(T a) = ∞ for any powera.
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E(T ) and Var(T ) can not be found using the PGF when T is defective: you
will get the wrong answer.

When you are asked to find E(T ) in a context where T might be defective:

• First check whether T is defective: is H(1) < 1 or= 1?

• If T is defective, then E(T ) = ∞.

• If T is not defective (H(1) = 1), then E(T ) = H ′(1) as usual.

4.11 Random Walk: the probability we never reach our goal

In the random walk in Section 4.9, we defined the first reaching time T01 as the

number of steps taken to get from state 0 to state 1.

In Section 4.9 we found the PGF of T01 to be:

PGF ofT01 = H(s) =
1−

√
1− s2

s
for |s| < 1.

Questions:

a) What is the probability that we never reach state 1, starting from state 0?

b) What is expected number of steps to reach state 1, starting from state 0?

Solutions:

a) We need to know whetherT01 is defective.

T01 is defective if and only ifH(1) < 1.

Now H(1) = 1−
√
1−12

1
= 1. SoT01 is notdefective.

Thus
P(never reach state 1| start from state 0) = 0.

We will DEFINITELY reach state 1 eventually, even if it takesa very long time.
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b) BecauseT01 is not defective, we can findE(T01) by differentiating the PGF:
E(T01) = H ′(1).

H(s) =
1−

√
1− s2

s
= s−1 −

(

s−2 − 1
)1/2

So H ′(s) = −s−2 − 1

2

(

s−2 − 1
)−1/2 (−2s−3

)

Thus

E(T01) = lim
s↑1

H ′(s) = lim
s↑1






− 1

s2
+

1

s3
√

1
s2 − 1






= ∞.

So the expected number of steps to reach state 1 starting fromstate 0 is infinite:
E(T01) = ∞.

This result is striking. Even though we will definitely reach state 1, the

expected time to do so is infinite! In general, we can prove the following results
for random walks, starting from state 0:

0

p

1

q

Property Reach state 1? P(T01 = ∞) E(T01)

p > q Guaranteed 0 finite

p = q = 1
2 Guaranteed 0 ∞

p < q Not guaranteed > 0 ∞

Note: (Non-examinable) If T is defective in the random walk, E(sT ) is not
continuous at s = 1. In Section 4.9 we had to solve a quadratic equation to find

H(s) = E(sT ). The negative root solution for H(s) generally represents E(sT )
for s < 1. At s = 1, the solution for E(sT ) suddenly flips from the − root to
the + root of the quadratic. This explains how E(sT ) can be discontinuous as

s ↑ 1, even though the negative root for H(s) is continuous as s ↑ 1 and all the
working of Section 4.9 still applies for s = 1. The reason is that we suddenly

switch from the − root to the + root at s = 1.

When |s| > 1, the conditional expectations are not finite so the working of

Section 4.9 no longer applies.


